Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cells ; 11(3)2022 01 29.
Article in English | MEDLINE | ID: covidwho-1667054

ABSTRACT

The novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) are currently utilized in clinics for pulmonary inflammatory diseases, including acute respiratory distress syndrome and acute lung injury. Given that MSCs offer a promising treatment against COVID-19, they are being used against COVID-19 in more than 70 clinical trials with promising findings. Genetically engineered MSCs offer promising therapeutic options in pulmonary diseases. However, their potential has not been explored yet. In this review, we provide perspectives on the functionally modified MSCs that can be developed and harnessed for COVID-19 therapy. Options to manage the SARS-CoV-2 infection and its variants using various bioengineering tools to increase the therapeutic efficacy of MSCs are highlighted.


Subject(s)
Bioengineering/methods , COVID-19/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/virology , Cytokines/metabolism , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Mesenchymal Stem Cells/cytology , Pandemics/prevention & control , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Treatment Outcome
2.
Elife ; 102021 12 20.
Article in English | MEDLINE | ID: covidwho-1662832

ABSTRACT

Employing concepts from physics, chemistry and bioengineering, 'learning-by-building' approaches are becoming increasingly popular in the life sciences, especially with researchers who are attempting to engineer cellular life from scratch. The SynCell2020/21 conference brought together researchers from different disciplines to highlight progress in this field, including areas where synthetic cells are having socioeconomic and technological impact. Conference participants also identified the challenges involved in designing, manipulating and creating synthetic cells with hierarchical organization and function. A key conclusion is the need to build an international and interdisciplinary research community through enhanced communication, resource-sharing, and educational initiatives.


Subject(s)
Artificial Cells , Bioengineering/methods , Bioengineering/statistics & numerical data , Bioengineering/trends , Intersectoral Collaboration , Organelles/physiology , Synthetic Biology/trends , Forecasting , Humans
3.
Nat Commun ; 12(1): 388, 2021 01 15.
Article in English | MEDLINE | ID: covidwho-1213927

ABSTRACT

The practices of synthetic biology are being integrated into 'multiscale' designs enabling two-way communication across organic and inorganic information substrates in biological, digital and cyber-physical system integrations. Novel applications of 'bio-informational' engineering will arise in environmental monitoring, precision agriculture, precision medicine and next-generation biomanufacturing. Potential developments include sentinel plants for environmental monitoring and autonomous bioreactors that respond to biosensor signaling. As bio-informational understanding progresses, both natural and engineered biological systems will need to be reimagined as cyber-physical architectures. We propose that a multiple length scale taxonomy will assist in rationalizing and enabling this transformative development in engineering biology.


Subject(s)
Bioengineering/trends , Forecasting , Synthetic Biology/trends , Bioengineering/methods , Synthetic Biology/methods
5.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-936421

ABSTRACT

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Subject(s)
Computational Biology/methods , Databases, Protein , Macromolecular Substances/chemistry , Protein Conformation , Proteins/chemistry , Bioengineering/methods , Biomedical Research/methods , Biotechnology/methods , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Macromolecular Substances/metabolism , Pandemics , Proteins/genetics , Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Software , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
6.
Theranostics ; 10(16): 7034-7052, 2020.
Article in English | MEDLINE | ID: covidwho-638462

ABSTRACT

This review provides an update for the international research community on the cell modeling tools that could accelerate the understanding of SARS-CoV-2 infection mechanisms and could thus speed up the development of vaccines and therapeutic agents against COVID-19. Many bioengineering groups are actively developing frontier tools that are capable of providing realistic three-dimensional (3D) models for biological research, including cell culture scaffolds, microfluidic chambers for the culture of tissue equivalents and organoids, and implantable windows for intravital imaging. Here, we review the most innovative study models based on these bioengineering tools in the context of virology and vaccinology. To make it easier for scientists working on SARS-CoV-2 to identify and apply specific tools, we discuss how they could accelerate the discovery and preclinical development of antiviral drugs and vaccines, compared to conventional models.


Subject(s)
Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Viral Vaccines/isolation & purification , Viral Vaccines/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/genetics , Betacoronavirus/immunology , Bioengineering/methods , Bioengineering/trends , Bioreactors , COVID-19 , COVID-19 Vaccines , Cell Culture Techniques , Computer Simulation , Coronavirus Infections/immunology , Drug Discovery/methods , Drug Discovery/trends , Drug Evaluation/methods , Drug Evaluation/trends , Drug Resistance, Viral , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Models, Biological , Organoids/cytology , Organoids/virology , Pneumonia, Viral/immunology , SARS-CoV-2 , Theranostic Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL